Read "Dynamo, Amazon’s Highly Available Key-value Store" Read "Bigtable, A Distributed Storage System for Structured Data" Read "Streaming Systems" 3, Watermarks Read "Streaming Systems" 1&2, Streaming 101 Read "F1, a distributed SQL database that scales" Read "Zanzibar, Google’s Consistent, Global Authorization System" Read "Spanner, Google's Globally-Distributed Database" Read "Designing Data-intensive applications" 12, The Future of Data Systems IOS development with Swift Read "Designing Data-intensive applications" 10&11, Batch and Stream Processing Read "Designing Data-intensive applications" 9, Consistency and Consensus Read "Designing Data-intensive applications" 8, Distributed System Troubles Read "Designing Data-intensive applications" 7, Transactions Read "Designing Data-intensive applications" 6, Partitioning Read "Designing Data-intensive applications" 5, Replication Read "Designing Data-intensive applications" 3&4, Storage, Retrieval, Encoding Read "Designing Data-intensive applications" 1&2, Foundation of Data Systems Three cases of binary search TAMU Operating System 2 Memory Management TAMU Operating System 1 Introduction Overview in cloud computing 2 TAMU Operating System 7 Virtualization TAMU Operating System 6 File System TAMU Operating System 5 I/O and Disk Management TAMU Operating System 4 Synchronization TAMU Operating System 3 Concurrency and Threading TAMU Computer Networks 5 Data Link Layer TAMU Computer Networks 4 Network Layer TAMU Computer Networks 3 Transport Layer TAMU Computer Networks 2 Application Layer TAMU Computer Networks 1 Introduction Overview in distributed systems and cloud computing 1 A well-optimized Union-Find implementation, in Java A heap implementation supporting deletion TAMU Advanced Algorithms 3, Maximum Bandwidth Path (Dijkstra, MST, Linear) TAMU Advanced Algorithms 2, B+ tree and Segment Intersection TAMU Advanced Algorithms 1, BST, 2-3 Tree and Heap TAMU AI, Searching problems Factorization Machine and Field-aware Factorization Machine for CTR prediction TAMU Neural Network 10 Information-Theoretic Models TAMU Neural Network 9 Principal Component Analysis TAMU Neural Network 8 Neurodynamics TAMU Neural Network 7 Self-Organizing Maps TAMU Neural Network 6 Deep Learning Overview TAMU Neural Network 5 Radial-Basis Function Networks TAMU Neural Network 4 Multi-Layer Perceptrons TAMU Neural Network 3 Single-Layer Perceptrons Princeton Algorithms P1W6 Hash Tables & Symbol Table Applications Stanford ML 11 Application Example Photo OCR Stanford ML 10 Large Scale Machine Learning Stanford ML 9 Anomaly Detection and Recommender Systems Stanford ML 8 Clustering & Principal Component Analysis Princeton Algorithms P1W5 Balanced Search Trees TAMU Neural Network 2 Learning Processes TAMU Neural Network 1 Introduction Stanford ML 7 Support Vector Machine Stanford ML 6 Evaluate Algorithms Princeton Algorithms P1W4 Priority Queues and Symbol Tables Stanford ML 5 Neural Networks Learning Princeton Algorithms P1W3 Mergesort and Quicksort Stanford ML 4 Neural Networks Basics Princeton Algorithms P1W2 Stack and Queue, Basic Sorts Stanford ML 3 Classification Problems Stanford ML 2 Multivariate Regression and Normal Equation Princeton Algorithms P1W1 Union and Find Stanford ML 1 Introduction and Parameter Learning

Override equals and hashcode method in Java



Sometimes we will need to override the equals() and hashcode() methods in a class in order to realize some specific functions. For example, if we have a class Person as below.

class Person {
    public long id;
    public double salary;

If we have a list of Person object, we would like to remove a person from the list. However, we only know the id of this person. In order to use simple code as list.remove(person), we would need to override equals() and hashcode(). Because remove() estimates with (o==null ? get(i)==null : o.equals(get(i))).


The equals() method is relatively easy to override, see the example as below.

The hashCode() method should take care all key fields in this class. The steps to calculate it is as below.

  1. Save a non-zero integer in result
  2. For every key fields, perform following steps to calculate c:
    • If boolean, calculate (f ? 0 : 1)
    • If byte, char, short or int, calculate (int) f
    • If long, calculate (int) (f ^ (f >>> 32))
    • If float, calculate Float.floatToIntBits(f)
    • If double, calculate Double.doubleToLongBits(f), then repeat what for long
    • If an object ref, call its hashCode(), return 0 if null
    • If an array, treat every element as key field
    • Finally for all, result = 37 * result + c
  3. Return result

For the Person class example, the methods are overriden as below.

class Person {
    public long id;
    public double salary;

    public boolean equals (Object other) {
        //step 1
        if (this == other) {
            return true;
        //step 2
        if (!(other instanceof Person)) {
            return false;
        //step 3
        Person that = (Person) other;
        return ( ==;

    public int hashCode() {
        int result = 17;
        int c = (int) ( ^ ( >>> 32));
        result = 37 * result + c;
        return result;

Creative Commons License
Melon blog is created by melonskin. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
© 2016-2020. All rights reserved by melonskin. Powered by Jekyll.