Public speaking course notes Read "Dynamo, Amazon’s Highly Available Key-value Store" Read "Bigtable, A Distributed Storage System for Structured Data" Read "Streaming Systems" 3, Watermarks Read "Streaming Systems" 1&2, Streaming 101 Read "F1, a distributed SQL database that scales" Read "Zanzibar, Google’s Consistent, Global Authorization System" Read "Spanner, Google's Globally-Distributed Database" Read "Designing Data-intensive applications" 12, The Future of Data Systems IOS development with Swift Read "Designing Data-intensive applications" 10&11, Batch and Stream Processing Read "Designing Data-intensive applications" 9, Consistency and Consensus Read "Designing Data-intensive applications" 8, Distributed System Troubles Read "Designing Data-intensive applications" 7, Transactions Read "Designing Data-intensive applications" 6, Partitioning Read "Designing Data-intensive applications" 5, Replication Read "Designing Data-intensive applications" 3&4, Storage, Retrieval, Encoding Read "Designing Data-intensive applications" 1&2, Foundation of Data Systems Three cases of binary search TAMU Operating System 2 Memory Management TAMU Operating System 1 Introduction Overview in cloud computing 2 TAMU Operating System 7 Virtualization TAMU Operating System 6 File System TAMU Operating System 5 I/O and Disk Management TAMU Operating System 4 Synchronization TAMU Operating System 3 Concurrency and Threading TAMU Computer Networks 5 Data Link Layer TAMU Computer Networks 4 Network Layer TAMU Computer Networks 3 Transport Layer TAMU Computer Networks 2 Application Layer TAMU Computer Networks 1 Introduction Overview in distributed systems and cloud computing 1 A well-optimized Union-Find implementation, in Java A heap implementation supporting deletion TAMU Advanced Algorithms 3, Maximum Bandwidth Path (Dijkstra, MST, Linear) TAMU Advanced Algorithms 2, B+ tree and Segment Intersection TAMU Advanced Algorithms 1, BST, 2-3 Tree and Heap TAMU AI, Searching problems Factorization Machine and Field-aware Factorization Machine for CTR prediction TAMU Neural Network 10 Information-Theoretic Models TAMU Neural Network 9 Principal Component Analysis TAMU Neural Network 8 Neurodynamics TAMU Neural Network 7 Self-Organizing Maps TAMU Neural Network 6 Deep Learning Overview TAMU Neural Network 5 Radial-Basis Function Networks TAMU Neural Network 4 Multi-Layer Perceptrons TAMU Neural Network 3 Single-Layer Perceptrons Princeton Algorithms P1W6 Hash Tables & Symbol Table Applications Stanford ML 11 Application Example Photo OCR Stanford ML 10 Large Scale Machine Learning Stanford ML 9 Anomaly Detection and Recommender Systems Stanford ML 8 Clustering & Principal Component Analysis Princeton Algorithms P1W5 Balanced Search Trees TAMU Neural Network 2 Learning Processes TAMU Neural Network 1 Introduction Stanford ML 7 Support Vector Machine Stanford ML 6 Evaluate Algorithms Princeton Algorithms P1W4 Priority Queues and Symbol Tables Stanford ML 5 Neural Networks Learning Princeton Algorithms P1W3 Mergesort and Quicksort Stanford ML 4 Neural Networks Basics Princeton Algorithms P1W2 Stack and Queue, Basic Sorts Stanford ML 3 Classification Problems Stanford ML 2 Multivariate Regression and Normal Equation Princeton Algorithms P1W1 Union and Find Stanford ML 1 Introduction and Parameter Learning

Some tools for fast development

2018-04-11

Rmate for remote editing

Rmate is a powerful plugin in VSCode for remote editing. We can edit files on remote server directly.

in VSCode:

  1. F1 then select remote: start server
  2. In VSCode integrated terminal: ssh -R 52698:localhost:52698 username@server_address -p server_port
  3. cd to the folder on server, open the file with rmate filename

Mercurial for version control

Mercurial is very similar to Git.

  • hg status
  • hg diff
  • hg diff -r changeset1..changeset2
  • hg log
  • hg log -G: graph view
  • hg add .
  • hg commit -m 'my description'
  • hg update _identifier(changeset)_: navigate through different versions of repo
  • hg push

Reconsiling the forks

Two ways to combine the two changes into one.

  1. hg rebase: update the base commit of your local commit from wherever you cloned onto their change. https://www.mercurial-scm.org/wiki/RebaseExtension
    • hg rebase -s X -d E, X is the base of a fork, E is the new base.
    • hg rebase -r Y3::Z3 -d E --collapse, collapse Y3 and Z3 into one commit, put it after E.
    • conflict
      • hg rebase --abort will abort
      • hg rebase --continue will continue
  2. hg push: merge two commits together.

Creative Commons License
Melon blog is created by melonskin. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
© 2016-2024. All rights reserved by melonskin. Powered by Jekyll.